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Abstract

The search to improve protective techniques against natural phenomena such as snow avalanches continues to use

classic methods to calculate flexible structures. This paper deals with a new method for designing avalanche protection

nets, based on a coupled analysis of both the net structure and the snow mantel using a coupled Lagrangian–Discrete

approach. As a thorough analysis of the behaviour of a snow cover in interaction with a structure is required, a

multiscale approach allowing the overall behaviour of the snowpack to be inferred from the local properties is pre-

sented. The constitutive equations are obtained from a statistical description of the mantel, regarded at the micro level

as a cohesive granular assembly.

� 2003 Published by Elsevier Ltd.
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1. Introduction

1.1. Mountainous areas and snow instabilities

Mountainous areas are generally characterized by strong snow precipitations. Furthermore, these re-

gions have common geomorphological features: erosion has formed a set of valleys whose slopes are often
steep. With the effects of gravity, a snow mantel on a slope is likely to develop mechanical instability. Its

development depends on several factors such as the rheological properties of the material, the type of soil,

the topography, and the climatic conditions. Snow instability induces many natural phenomena charac-

teristic of the mountain environment during winter: avalanches, snow mantel creeping, etc.
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1.2. A sensitive socioeconomic context

The Alps remained a relatively isolated region up to the beginning of the 20th century. But industrial and

tourist development has led to considerable pressure from local planning needs. Several major roads have
also been constructed in Alpine valleys to allow economic exchanges between European countries. Fur-

thermore, because of the presence of water (rivers, streams) associated with the geomorphological features

of the area, hydroelectric power plants have been set up along the main rivers. Mining concerns in many

areas must also be mentioned. In addition, a substantial industrial network based on electrochemical

production has developed to take advantage of these resources.

During this industrial conquest of a part of the Alpine territory, tourist activities increased. In the second

part of the last century, urban dwellers began visiting mountain areas for recreational activities: winter

tourism, in connection with the surge in skiing, has greatly contributed to this development. In spite of
constraints imposed by this particular environment, a large network of infrastructures has been constructed

over the past few decades in mountain areas. But these urban facilities are often exposed to hazards such as

avalanches. Because avalanches can be highly destructive, the concept of vulnerability must be taken into

consideration in these urban areas. Nevertheless, the notion of risk, defined as the product of vulnerability

per alea, has not yet been accepted by society, which has led the fundamental and applied research com-

munities to develop both specific methods and tools to ensure better management of risk.
1.3. A case of active risk intervention: snow avalanche net structures

Risks stemming from snow instabilities can be reduced in different ways. Active risk intervention aims to

prevent the failure of the snow mantel and the resulting avalanche; this is possible by stabilizing the snow
mantel. Passive intervention does not prevent the triggering of the avalanche, but aims to control the

avalanche flowing terms of avalanche direction, velocity, width, and height. Snow avalanche net structures

belong to the category of active intervention. This paper deals with modelling the interaction between a

snow mantel and this type of structure. Because of their linear shape, snow avalanche net structures are

often a well-adapted solution to such problems caused by local topographic conditions. These structures

are composed of a set of panels of metallic net, held by poles and anchors (Fig. 1). The downward
Fig. 1. Example of a snow avalanche net structure (EI Montagne).
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movement of the snow mantel is composed of a sliding motion (translation displacement of the entire

mantel, considered parallel to the ground surface) and a reptant motion (creeping deformation with set-

tlement). This complex movement directs a strain field and then a stress field into the net sheets. Conse-

quently, a reaction force is applied to the snow mantel; this force results in a stabilization effect.

1.4. Goals and methodology

From a fundamental research point of view, the mechanical interaction between the snow mantel and the

structure requires a coupled mechanical analysis. Avalanche net structures are an example of flexible

structures. At the equilibrium state, the distribution of forces depends heavily on the strained geometrical

shape of the net sheets (Nicot, 1999; Nicot et al., 2002). This feature is the main difference between flexible

and rigid structures (Larsen, 2000). The major advantage of our approach is that the final geometrical

shape of the net sheets is not assumed; generally, other methods consider a geometrical shape that is not

computed, but assessed from in situ observations (Kern, 1978; Margreth, 1995). It is of great interest to
predict this final configuration as accurately as possible, because it strongly influences the distribution of

forces into the structure. In this context, the new approach introduces the currently used tools and concepts

from both solid mechanics (Lemaitre and Chaboche, 1988; Sidoroff, 1984) and numerical modelling

(Cundall and Roger, 1992) in order to compute the final geometrical shape. This approach is relevant to the

field of avalanche control for the following reasons:

• Initially proposing the final geometrical shape of the structure (net sheets and wires) remains problem-

atic.
• Results from classic methods show that there is a strong relationship between the final geometrical shape

and the distribution of internal forces.

Furthermore, the final geometrical shape of the net sheets can be computed only if the loading applied by

the snowpack to the structure is correctly described. This requires a thorough description of the behaviour

of the snowpack in interaction with the ground, the meteorological conditions, and a flexible or rigid

structure.

In what follows, an original method of constitutive modelling of a snowpack will be proposed, based on
a multiscale approach allowing the overall behaviour of the snowpack to be inferred from the local

properties. Then the case of a snowpack in interaction with an avalanche structure will be considered and

a Discrete–Lagrangian approach will be proposed.
2. Constitutive modelling of a snowpack

This paper deals only with snow mantel creeping. As mentioned above, improving defensive structures

such as avalanche net structures requires a thorough description of the constitutive behaviour of the
snowpack. In the past, many authors have proposed different models using phenomenological approaches

(Mellor, 1975; Salm, 1975; Desrues et al., 1980), but these models introduce numerous parameters which

are often difficult to calibrate. Similarly, Gagliardini (Gagliardini and Meyssonnier, 1997) has proposed

inferring the behaviour of a dense snow mantel from the behaviour of polycrystal ice. The importance of

the snow micro-structure to deformational processes has been known for many years (Bader et al., 1939;

Kragelski and Shakhov, 1949; Hansen and Brown, 1987; Brown and Edens, 1991). The assessment of the

macroscopic properties of a snow mantel from a local description of the micro-structure can be a relevant

alternative in as far as the structure at the micro level can be regarded as a granular assembly. Nevertheless,
developing a constitutive model using micro-structural properties remains to be done (Lewis et al., 1997).
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This paper proposes to develop this kind of multiscale approach, using a statistical description of fabrics.

As an application, the case of a snowpack in interaction with a flexible structure is considered.

2.1. Geometric setting

We will consider the case of a snowpack lying on a uniform slope (w). It is assumed that the surrounding

ground surface can be described by a plane (P). The set of equations in the following sections will be

written in the orthonormal base (~k1;~k2;~k3); (Fig. 2):

~k1 is the direction of the main slope of (P);
~k2 is the horizontal direction of (P);
~k3 is the normal direction to the plane (P).

In this base, coordinates of any point M will be denoted (x1; x2; x3).
We denote L the length of the snowpack, w its width, and H its height. It is assumed that H is uniform.

2.2. General methodology

After snowfalls have occurred, gravity effects occur and the physical structure of the snowpack changes

in interaction with the ground and the meteorological conditions. Rather rapidly, initial snow crystals are

transformed into ice grains and the resulting snow cover can be considered as a porous material made of ice

grains and air (Duva, 1994). Thus, it is assumed in the proposed approach that the snow cover can be

described by a sintered granular medium: each ice grain is modelled as a rigid particle. Between neigh-

bouring grains, contacts may occur and solid bonds may be created. Generally, on a small scale, the

properties of the materials, whose size is equal to the size of the elementary particles described as rigid
bodies, are quite simple (Cambou, 1998). Complexity appears on larger scales (macroscopic scales), because

purely geometrical non-linear effects occur inside a large number of particles. As a first approximation, we

postulate that the mechanical behaviour of a snow volume element depends only on the mechanical

behaviour of inter-granular bonds belonging to this volume. This kind of approach was initially used by

Bazant for concrete materials (Bazant and Prat, 1988); more recently, Bartelt has extended this approach

to the case of snowpacks (Bartelt and Christen, submitted for publication).
Fig. 2. Definition of the orthonormal base.
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The mechanical behaviour of ice bonds can be expressed in a straightforward manner. This paper derives

the constitutive behaviour of the snowpack on a macroscopic scale from a microscopic scale description,

taking a statistical description of the fabrics into account.

2.3. Microscopic description of the medium

Each ice bond can be described as a tangent thin plane neck. Hereafter, the cross-section of the neck is

denoted ‘‘contact plane’’. Under gravity effects, a stress state is generated at each point of the neck. As the

magnitude of the neck is very small, the stress state can be assumed to be uniform. This stress state results in
a contact force ~F c whose normal component Fn and the tangential component Ft to the contact plane are

expressed as follows:
Fn ¼ ~rS ð1Þ

Ft ¼ ~sS ð2Þ
where ~r is the normal component and ~s the tangential component of the stress acting in the contact plane,

and S is the surface of the cross-section of the neck (Fig. 3).

On the microscopic scale, the behaviour of grain bonds is mainly governed by the behaviour of ice.

Several authors such as Meyssonnier and Gagliardini have developed meticulous advanced models for
describing the behaviour of ice polycrystals (Gagliardini and Meyssonnier, 1997, 1999). As a first

approximation, shear strength is ignored here with regard to compressive or tensile strength. Generally, the

local behaviour is described well using a function ~f relating ~r, ~e and their first time-derivatives _~r and _~e:
~f ð~r; _~r;~e; _~eÞ ¼ 0. For instance, a non-linear visco-elastic tensile–compressive behaviour is described by the

well-known relation:
_~r
Kice

þ ~r
gice

 !aice

¼ _~e ð3Þ
where Kice is the Youngs modulus of the ice, and aice an exponent taking non-linear phenomena into ac-

count. When aice ¼ 1, gice is the viscosity of the ice; otherwise, it is a sort of non-linear viscosity. This non-

linear Maxwell model stands as a generalization of Glen�s law, which ignores the elastic part of the strain.

Glen�s law is particularly well adapted to describing creeping phenomena. However, relaxation phenomena
are not accounted for by this model. In order to develop a constitutive formulation for snow material that is

as general as possible, it would be of interest to consider the non-linear Maxwell model.

In this paper, local strain rates _~e are assumed to be large enough (typically, _~e > 10�4 s�1) for grain bonds

to be regarded as a quasi-brittle material: fracture may occur when grain bonds undergo tensile loading.
Fig. 3. Ice bond between two grains in contact.
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Yield is likely to occur for lower strain rates, but as a first approximation, this case is ignored in this paper.

In the case of a snowpack subjected to a creeping deformation, the order of magnitude of local strain rates,

which are different from the usual strain rates of a snowpack, is equal to 10�3 s�1 (Bartelt and Christen,

submitted for publication). Thus, the criterion failure can be expressed as follows:
~r6 ~rl ð4Þ
where ~rl is the failure stress. Ideally, the failure stress should be given as a function of the size of defects

taking place within the bonds; assessing the size of defects in terms of reliable local indicators such as stress
or geometric parameters is as yet too complex. As a first approach, we consider that the failure stress is

uniform within the snowpack because the lack of research in this domain makes a more accurate approach

impossible.

Hereafter, for a given snow cover in a given state, it is considered that failure may occur between contact

grains. But it is assumed that no new bond can be created between contact grains. Thus, the density of grain

bonds is a time-decreasing function.
2.4. Micro–macro description of the medium

2.4.1. Definition of the representative volume element

Hereafter we consider a volume element ve around a point M , in which the number of grain bonds Nb is

large enough so that this volume can be described as a continuous material. Typically, Nb ¼ 1000 is a

convenient order of magnitude. In such a frame, the normal direction ~n of the different contact planes is

assumed to be a continuous variable: point N , defined by ON
�! ¼~n, describes a half sphere continuously. In

the field of granular media, ve is usually denoted ‘‘representative volume element’’ (RVE) (Masson and

Martinez, 2000).
As shown in Fig. 4, the coordinates of ~n can be given as a function of both angles h (longitude) and

u (colatitude):
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Fig. 4. Continuous description of the normal direction of contact.
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~nðh;uÞ ¼
n1ðh;uÞ
n2ðh;uÞ
n3ðh;uÞ

24 35 ¼
sinu cos h
sinu sin h
cosu

24 35 ð5Þ
where both h and u are continuous variables in ½0; p�.

2.4.2. The macroscopic stress tensor

Considering a representative volume element located around a given point M , the macroscopic stress

tensor ��r is computed from the local contact forces ~F c between each pair of ice grains in contact in the RVE.
��r and ~F c can be related by the well-established Love formula of homogenization (Caillerie, 1995):
��rij ¼
1

ve

X
c

F c
i l

c
j ð6Þ
where F c
i is the i-component of the contact force ~F c, lcj is the j-component of the branch vector~lc joining the

centres of grains in contact on contact c, and the sum is extended to all the contacts occurring in volume ve.
As ~F c ¼ ~rðh;uÞS~nðh;uÞ and~lc ¼ lðh;uÞ~nðh;uÞ, Eq. (6) can be rewritten as:
��rij ¼
1

ve

ZZ
½0;p�2

Slðh;uÞ~rðh;uÞniðh;uÞnjðh;uÞxðh;uÞve sinudhdu ð7Þ
where xðh;uÞve is the number of grain bonds in the direction defined by angles h and u and belonging to
volume ve. The length lðh;uÞ between the centres of the two grains in contact is here assumed to be identical

for any grain bond, so that lðh;uÞ ¼ l (Fig. 3). Furthermore, xðh;uÞve can be related to the probability

density fh;uðh;uÞ for having a grain bond in direction ~n�h;�u with h < �h < hþ dh and u < �u < uþ du:
fh;uðh;uÞ ¼
xðh;uÞve

Nb
ð8Þ
Assuming h and u to be statistically independent variables, fh;u can be written as the product of both

probability densities fhðhÞ and fuðuÞ:

fh;uðh;uÞ ¼ fhðhÞfuðuÞ ð9Þ
so that Eq. (7) can be rewritten as:
��rij ¼
Z Z

½0;p�2
Nb

Sl
ve

~rðh;uÞniðh;uÞnjðh;uÞfhðhÞfuðuÞ sinudhdu ð10Þ
Assuming the volume vg of each ice grain to be approximated by a cylinder, vg ¼ lS, and denoting Ng the

number of grains belonging to the RVE, qice the density of ice, and qs the density of the snowpack at the

considered point M , the mass balance applied to the RVE provides:
Ngvgqice ¼ veqs ð11Þ
Finally, combining both Eqs. (10) and (11) gives:
��rij ¼
Z Z

½0;p�2

Nb

Ng

qs

qice

~rðh;uÞniðh;uÞnjðh;uÞfhðhÞfuðuÞ sinudhdu ð12Þ
2.4.3. The strain localization relation

Let ~rðh;uÞ be a statically admissible distribution of stress acting at contact points in the RVE. This
distribution directs the distribution of strains ~eðh;uÞ, which is then kinematically admissible. The defor-

mation energy eEðh;uÞ associated with the contacts in direction ~nðh;uÞ is given by:
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eEðh;uÞ ¼ xðh;uÞve
Nb=ve

~rðh;uÞ~eðh;uÞ ð13Þ
and thus the total deformation energy into an RVE can be written as follows:
eEd ¼
Z Z

½0;p�2
ve~rðh;uÞ~eðh;uÞfhðhÞfuðuÞ sinudhdu ð14Þ
At the macroscopic level, both distributions ~rðh;uÞ and ~eðh;uÞ are associated with the macroscopic tensors
��r and ��e. The macroscopic deformation energy is given by the following equation:
Ed ¼
X
i;j

ve��rij��eij ð15Þ
Combining Eqs. (12) and (15) provides:
Ed ¼
Z Z

½0;p�2
ve~rðh;uÞ

X
i;j

Nb

Ng

qs

qice

��eijniðh;uÞnjðh;uÞ
� �

fhðhÞfuðuÞ sinudhdu ð16Þ
But the ‘‘Hill macro homogeneity equality’’ (Hill, 1967) implies the equality of deformation energies on

both scales, thus, eEd ¼ Ed. Given that this relation must be fulfilled only for any statically admissible field

and not for any field ~rðh;uÞ it is not possible to derive the usual result in a rigorous mathematic manner:
~eðh;uÞ ¼ Nb

Ng

qs

qice

X
i;j

��eijniðh;uÞnjðh;uÞ ð17Þ
Nevertheless, as an assumption, the expression of local strain given in Eq. (17) will be admitted, but it is an

affine approximation of the local strain from the macroscopic strain tensor (Bardet, 1998), which means

that the static field ~rðh;uÞ, associated with the strain field ~eðh;uÞ defined with Eq. (17) may not ensure local

momentum balance of grain bonds.

In general tensor notations, Eq. (17) can also be rewritten as:
~eðh;uÞ ¼ Nb

Ng

qs

qice

ð��e �~nðh;uÞÞ �~nðh;uÞ ð18Þ
We denote this relation ‘‘the strain localization relation’’ because it is the local strain in a given direction
~nðh;uÞ defined from the macroscopic strain tensor ��e.

2.4.4. Changes in the medium fabrics

In the proposed approach, the RVE is a statistically homogeneous medium. The location of each ice

grain in the RVE is not known, but the direction of grain bonds is statistically described. In this model, the

structure at the micro level (fabrics) is completely described by the distribution functions fh and fu. Initially,
just after snowfalls, the spatial distribution of all the grain bonds in the snow cover is approximately

isotropic. Rather rapidly, as gravity effects occur, an anisotropy is created, so that the distribution functions

are no longer uniform.

We will now investigate a mantel lying on a uniform slope, whose width is much greater than its height,
in which the equilibrium metamorphism has occurred; during this metamorphism phase, initial snow

crystals are transformed into ice grains and contact bonds may develop between neighbouring grains. We

consider that at the end of this development, the state of the mantel can be properly defined by the dis-

tribution functions f 0
h and f 0

u , thereby verifying:
f 0
h ðhÞ ¼

1

p
ð19Þ
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f 0
uðp� uÞ ¼ f 0

uðuÞ ð20Þ
The changes in a snowpack will now be analysed from this initial state, which is described by functions f 0
h

and f 0
u . As gravity effects direct a complex downward motion on the snowpack, including creeping and

sliding, grain bonds are likely to be broken and the current functions fh and fu may change. Thus, in the

more general case fh 6¼ f 0
h and fu 6¼ f 0

u . Eq. (19) means that the directions of contact are equally probable in

each plane (x1; x2), whereas Eq. (20) means that each plane (x2; x3) is a symmetry plane.

The changes in a snowpack in which the rotation of ice grains can be ignored are now the subject of

analysis. There is no rotation of the grain bonds if rotation of the grains is ignored; both distribution
functions fh and fu will evolve depending only on the failure which may occur in grain bonds. From above,

the contact in direction~nðh;uÞ exists while ~rðh;uÞ < ~rl. From a given state of the medium�s fabrics, which
is completely described by both distribution functions f 0

h and f 0
u , it is possible to describe the changes in the

medium�s fabrics induced by the change in strains. Indeed, current distribution functions fh and fu can be

easily related to f 0
h and f 0

u . It is therefore useful to introduce the binary function kðh;uÞ, defined as follows:

Initially, 8ðh;uÞ kðh;uÞ ¼ 1

After, as failure may occur, the binary function kðh;uÞ is likely to evolve:

If ~rðh;uÞ ¼ ~rl then kðh;uÞ ¼ 0
Thus,
fhðhÞfuðuÞ ¼
N 0

b

Nb
kðh;uÞf 0

h ðhÞf 0
uðuÞ ð21Þ
where N 0
b is the initial number of grain bonds existing in each RVE (N 0

b � 1000). From Eq. (21), Eq. (12)
can be rewritten as:
��rij ¼
N 0

b

Ng

qs

qice

Z Z
½0;p�2

~rðh;uÞkðh;uÞniðh;uÞnjðh;uÞf 0
h ðhÞf 0

uðuÞ sinudhdu ð22Þ
This expression relates the macroscopic stress tensor to the medium�s fabrics.

2.5. Mechanical behaviour of the snowpack on the macro level

2.5.1. General scheme and further approximations

Using previous relations, it is now possible to establish the general scheme, allowing both the macro-
scopic stress tensor and the strain rate tensor to be related. The scheme depicted in Fig. 4 shows how the

stress tensor can be deduced from the strain rate tensor. It must be noted that this scheme is entirely

reversible but then requires further appropriate relations to be added. In this paper, the computation of the

strain rate tensor from the stress tensor will not be considered.

Whichever local behaviour relates local variables, the scheme proposed in Fig. 5 is consistent and

reliable. But non-linear models such as the non-linear visco-elastic tensile–compressive model described by

Eq. (3) do not allow an analytical solution to be inferred. In the past, several authors have discussed the
Fig. 5. General scheme relating both the stress tensor and the strain rate tensor.
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non-linear properties of ice; even if previous studies have essentially dealt with polar ice, it seems that the

behaviour of ice subjected to low stresses could be assumed to be linear, at least as a first approximation

(Lliboutry and Duval, 1985; Pimienta, 1987; Castelnau, 1996). The lack of knowledge on the bond-scale

structure of the ice makes it difficult to calibrate the exponent aice. For the purposes of example, analytical
constitutive formulation will be proposed considering the linear case: aice ¼ 1. In the case where aice 6¼ 1,

only the general form of the constitutive equations will be given. The influence of the exponent aice will be
examined in Part II.
2.5.2. Definition of the constitutive tensor

From the linear Maxwell relation (aice ¼ 1),
_~rðh;uÞ
Kice

þ ~rðh;uÞ
gice

¼ _~eðh;uÞ, the expression of ~rðh;uÞ can be ob-

tained by integration:
~rðh;uÞ ¼ Kicee
�Kice
gice

t
Z t

0

e
Kice
gice

n _~eðh;uÞðnÞdn ð23Þ
Setting /ðkÞ ¼
RR

½0;p�2 kðh;uÞf 0
h ðhÞf 0

uðuÞ sinudhdu, as Nb ¼ N 0
b/ðkÞ, combining Eqs. (18), (22), and (23)

gives:
Þ

��rij ¼
N 0

b

Ng

qs

qice

� �2

/ðkÞKicee
�Kice
gice

t
X
k;l

Z t

0

e
Kice
gice

n _e
¼
klðnÞdn � ð� � �Þ

�
ð� � �Þ

�
Z Z

½0;p�2
kðh;uÞf 0

h ðhÞf 0
uðuÞniðh;uÞnjðh;uÞnkðh;uÞnlðh;uÞ sinudhdu

�
ð24
Let
Ekl ¼
Z t

0

e
Kice
gice

n _e
¼
klðnÞdn
and
Aijkl ¼
Z Z

½0;p�2
kðh;uÞf 0

h ðhÞf 0
uðuÞniðh;uÞnjðh;uÞnkðh;uÞnlðh;uÞ sinudhdu
Thus, on the one hand,
��rij ¼
N 0

b

Ng

qs

qice

� �2

/ðkÞKicee
�Kice
gice

t
X
k;l

AijklEkl ð25Þ
and on the other hand, from both Eqs. (17) and (23):
~rðh;uÞ ¼ N 0
b

Ng

qs

qice

� �
/ðkÞKicee

�Kice
gice

t
X
k;l

nkðh;uÞnlðh;uÞEkl ð26Þ
Aijkl is a 4-order tensor, denoted ‘‘constitutive tensor’’. Thanks to the symmetry of both ��rij and ��eij tensors,
Aijkl can be contracted into a symmetric 6 · 6 matrix Mij relating these vectors �ri ¼ ½r11; r22; r33;

ffiffiffi
2

p
r12;ffiffiffi

2
p

r13;
ffiffiffi
2

p
r23� and Ei ¼ ½E11;E22;E33;

ffiffiffi
2

p
E12;

ffiffiffi
2

p
E13;

ffiffiffi
2

p
E23�:
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Mij ¼

A1111 A2211 A3311

ffiffiffi
2

p
A1211

ffiffiffi
2

p
A1311

ffiffiffi
2

p
A2311

A1122 A2222 A3322

ffiffiffi
2

p
A1222

ffiffiffi
2

p
A1322

ffiffiffi
2

p
A2322

A1133 A2233 A3333

ffiffiffi
2

p
A1233

ffiffiffi
2

p
A1333

ffiffiffi
2

p
A2333ffiffiffi

2
p

A1112

ffiffiffi
2

p
A2212

ffiffiffi
2

p
A3312 2A1212 2A1312 2A2312ffiffiffi

2
p

A1113

ffiffiffi
2

p
A2213

ffiffiffi
2

p
A3313 2A1213 2A1313 2A2313ffiffiffi

2
p

A1123

ffiffiffi
2

p
A2223

ffiffiffi
2

p
A3323 2A1223 2A1323 2A2323

2666666664

3777777775
ð27Þ
The following constitutive relationship is finally obtained:
�ri ¼
N 0

b

Ng

qs

qice

� �2

/ðkÞKicee
�Kice
gice

t
X
j

MijEj ð28Þ
Mij is denoted the ‘‘constitutive matrix’’ and the term Ch ¼
N0
b

Ng

qs
qice

� �2
/ðkÞ is a homogenization coefficient,

which is generally lower than 1.

2.5.3. Calculation of the constitutive matrix

In order to exemplify the form of the matrix Mij, the different terms are calculated considering the initial

state of the snowpack (fh ¼ f 0
h and fu ¼ f 0

u ). In this case, for any values of h and u, kðh;uÞ is equal to 1. It
may be established that the constitutive matrix can be written as follows:
M ¼

3
8
S5 1

8
S5 1

2
ðS3 � S5Þ 0 0 0

1
8
S5 3

8
S5 1

2
ðS3 � S5Þ 0 0 0

1
2
ðS3 � S5Þ 1

2
ðS3 � S5Þ 1� 2S3 þ S5 0 0 0

0 0 0 1
4
S5 0 0

0 0 0 0 S3 � S5 0

0 0 0 0 0 S3 � S5

2666666664

3777777775
ð29Þ
where Sp stands for a p-order moment of distribution function f 0
u :
Sp ¼
Z p

0

f 0
uðuÞ sin

p udu ð30Þ
It must be noted that Mij is a pseudo-isotropic transverse matrix, with only two independent coefficients.

Furthermore, if the distribution function f 0
u is assumed to be uniform, as

R p
0
f 0
uðuÞ sinudu ¼ 1, it follows

that f 0
uðuÞ ¼ 1=2; the different values of Sp can be directly calculated: S3 ¼ 2=3 and S5 ¼ 8=15.

Thus, as depicted in Eq. (31), Mij is a perfectly isotropic matrix. This result is absolutely consistent,

because the material structure of the snowpack is also isotropic.
M ¼ 1

15

3 1 1 0 0 0

1 3 1 0 0 0
1 1 3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

26666664

37777775 ð31Þ
2.5.4. Asymptotic behaviour

Interestingly, in order to examine the structure of the constitutive model, a simplistic case is considered.

In the general case, this constitutive model was recently more thoroughly analysed by Nicot (submitted for
publication). If the viscosity of ice is supposed to be infinite, the behaviour of the material becomes a purely
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quasi-brittle elastic behaviour. Eq. (28) can be rewritten as �ri ¼ ChKice

P
j Mij�ej with �ei ¼ ½e11;

e22; e33;
ffiffiffi
2

p
e12;

ffiffiffi
2

p
e13;

ffiffiffi
2

p
e23�. It must be noted that each term of the matrix of elasticity is the product of the

Youngs modulus of ice Kice by the homogenization coefficient and the term Mij, which depends only on the

distribution functions fh and fu. In the particular case where the medium may be isotropic (fhðhÞ ¼ 1=p and
fuðuÞ ¼ 1=2), the behaviour is also isotropic. This requires the failure stress ~rl to be infinite. In this case, the

equation �ri ¼ ChKice

P
j Mij�ej can also be expressed in the following manner, rij ¼ ChKice

15
ð2eij þ trð��eÞdijÞ,

allowing Lame�s constants l and k to be calculated: k ¼ l ¼ ChKice=15. Thus, the global Young modulus Ks

and Poisson coefficient ms can be inferred for the medium on the macro level: Ks ¼ Ch

6
Kice and ms ¼ 1=4. It

must be noted that these results are in perfect agreement with those obtained by other authors (Chang and

Liao, 1994; Cambou et al., 1995), when the local tangential stiffness is ignored.
3. Application to the case of a snowpack in interaction with an avalanche structure

3.1. The constitutive relation for the snowpack

3.1.1. The macroscopic strain

The snowpack is composed of nl layers, whose height (hl) and length (L) are uniform. Each layer is
associated with a meteorological event: both density ql and mechanical parameters related to the mantel are

assumed to be uniform within each layer �l�. The height of the entire mantel is given by the relation:
H ¼
Xnl
l¼1

hl ð32Þ
Width w is assumed to be substantially greater than both height H and length L. Thus, by denoting

(u1; u2; u3) the components of the displacement field ~u, u2 can be ignored with regard to both u1 and u3.
Furthermore, as a first approximation, component u1 does not depend on position x1. Also assuming that
the structure does not substantially modify the settlement of the snowpack, it can be postulated that u3 does
not depend on positions x1 and x2. Finally, the displacement field can be defined as follows:
~u ¼
u1ðx2; x3; tÞ

0

u3ðx3; tÞ

24 35 ð33Þ
In these conditions, the strain rate tensor _e
¼
, for small deformation, is given by:
_e
¼
¼

0 1
2

o _u1
ox2

1
2

o _u1
ox3

1
2

o _u1
ox2

0 0

1
2

o _u1
ox3

0 o _u3
ox3

26664
37775 ð34Þ
From a physical point of view, both height and density profiles are time dependent; but in the proposed

approach, the settlement phenomenon is assumed not to have a strong interaction with the creeping

phenomenon. Furthermore, it seems to be relevant to consider that the loading applied by the snowpack to

the structure is mainly caused by the creeping phenomenon, and not by the settlement phenomenon. Thus,

the creeping phenomenon is investigated by taking into account the final values of height H and density ql.
These data can be assessed by specific numerical tools such as CROCUS (Brun et al., 1989). This implies

that any point M belonging to the snowpack is subjected to a displacement ~u ¼ u1ðx2; x3; tÞ~k1 in a single
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direction (~k1), which only depends on coordinates x2 and x3. Thus, the considered strain rate tensor has the

following form:
_e
¼
¼

0 1
2

o _u1
ox2

1
2

o _u1
ox3

1
2

o _u1
ox2

0 0

1
2

o _u1
ox3

0 0

2664
3775 ð35Þ
Furthermore, a numerical tool such as CROCUS enables both the initial mean coordination number �nc and
the mean volume vg of ice grains to be assessed; this allows both Ng and N 0

b to be related as: N 0
b ¼ �ncNg, and

thus, taking Eq. (11) into account, the RVE can be deduced with the following equation:
ve ¼ vg
N 0

b

�nc

qice

ql
ð36Þ
It must be noted that ql, as well as �nc, may be a function of the considered position (point M).

3.1.2. The constitutive formulation

3.1.2.1. The linear case. In the most general case, function kðh;uÞ is equal to 0 or 1, so that the general

expression of M given by Eq. (27) has to be considered. In order to exemplify the constitutive formulation,

the distribution function fu is assumed to be uniform, so that f 0
uðuÞ ¼ 1=2 for any value of u. From

Eq. (28), making use of the particular form of the strain rate tensor given in Eq. (35), the following relation

can be derived:
�ri ¼ 2ChKicee
�Kice
gice

t Mi4

Z t

0

e
Kice
gice

n _e
¼
12 dn

�
þMi5

Z t

0

e
Kice
gice

n _e
¼
13 dn

�
ði ¼ 1; . . . ; 6Þ ð37Þ
In particular, the two shear terms are given by:
��r12 ¼ 2ChKicee
�Kice
gice

t M44

Z t

0

e
Kice
gice

n _e
¼
12 dn

�
þM45

Z t

0

e
Kice
gice

n _e
¼
13 dn

�
ð38Þ
and
��r13 ¼ 2ChKicee
�Kice
gice

t M54

Z t

0

e
Kice
gice

n _e
¼
12 dn

�
þM55

Z t

0

e
Kice
gice

n _e
¼
13 dn

�
ð39Þ
The calculation of termsM44,M45 andM55 requires knowing the function kðh;uÞ. This function is related to

the microscopic stress ~rðh;uÞ, whose expression is given by Eq. (26). As only the two terms E12 and E13 are

not nil, it can be inferred that:
~rðh;uÞ ¼
ffiffiffi
2

p N 0
b

Ng

qs

qice

� �
/ðkÞKicee

�Kice
gice

t n1ðh;uÞn2ðh;uÞE12

�
þ n1ðh;uÞn3ðh;uÞE13

�
ð40Þ
and taking into account Eq. (5), this expression can be rewritten as:
~rðh;uÞ ¼ C12 cos h sin h sin
2 uþ C13 cos h cosu sinu ð41Þ
where
C1i ¼ 2
N 0

b

Ng

qs

qice

� �
/ðkÞKicee

�Kice
gice

t
Z t

0

e
Kice
gice

n _e
¼
1i dn ði ¼ 1; 2Þ ð42Þ
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3.1.2.2. The non-linear case. Given both terms _e
¼
12 and _e

¼
13, from Eq. (10), the local strain rate is given by:
_~eðh;uÞ ¼ N 0
b

Ng

qs

qice

� �
/ðkÞ _e

¼
12 sin

2 u cos h sin hþ _e
¼
13 cosu sinu cos h

� �
ð43Þ
Thus, the local stress is obtained with numerical integration of differential equation
_~rðh;uÞ
Kice

þ ~rðh;uÞ
gice

 !aice

¼ _~eðh;uÞ
This makes it possible to infer a numerical estimate of kðh;uÞ, and thus of ��r12 and ��r13:
��r12 ¼
1

2p
N 0

b

Ng

qs

qice

� �Z Z
½0;p�2

~rðh;uÞkðh;uÞ cos h sin h sin3udhdu ð44Þ
and
��r13 ¼
1

2p
N 0

b

Ng

qs

qice

� �Z Z
½0;p�2

~rðh;uÞkðh;uÞ cos h cosu sin2udhdu ð45Þ
As a general analytical solution of Eq. (3) does not exist, an analytical solution relating _e
¼
12 and _e

¼
13 with ��r12

and ��r13 cannot be derived. Contrary to the linear case, this means that the analytical expression of the

constitutive matrix M cannot be inferred.

3.2. Spatial description of the bodies

3.2.1. Phenomenological analysis

The downward movement of the snow mantel is composed of a gliding motion (translation displacement

of the entire mantel considered, parallel to the ground surface) and of a reptant motion (creeping defor-

mation with settlement). In the course of the creeping deformation, complex changes in the micro-structure
take place, which strongly govern the distribution of internal stresses (Kry, 1975). As indirect evidence,

recorded acoustic emissions show that grain bonds may fail (St. Lawrence, 1980). Thus, the multiscale

constitutive model presented in the previous sections seems to be well adapted to the analysis of the

downward movement of a snowpack.

The purpose of open structures such as snow avalanche nets is not to prevent the downward motion of

the snowpack. The practical objective is to slow down this motion in order to reduce the stresses existing in

the snowpack. This strongly limits the risk of initialization of large-scale failure mechanisms. The slowdown

results mainly from the friction between the snow cover and both the wires of the net sheet and the poles.
Other phenomena may occur at the interface between the wires and the snow, induced in part by the

thermal conductivity of metallic wires; but these are second-order phenomena that can be ignored as a first

assumption.

3.2.2. The snowpack

Any point M belonging to the snowpack is subjected to a displacement in a single direction (~k1). Thus,
each layer of the snow mantel can be described by a regular set of rigid parallelepiped elements (snow

elements), which remain parallel to direction~k1. By denoting he, we, and L, respectively, as the height, the

width and the length of each snow element �e�, the volume Ve is given by the relation:
Ve ¼ heweL ð46Þ

It must be noted that the typical size of he (resp. we) is very small with regard to the size of H (resp. w). But
the RVE must also be entirely contained in a snow element; this requirement must be fulfilled in order to
use the previous constitutive model, making the following condition necessary:
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minðhe;weÞ >
3

4p
ve

� �1=3

ð47Þ
Eq. (36) expresses ve as a function of the following parameters, whose usual values or ranges can be given:

N 0
b ¼ 1000, 26 �nc 6 5, qice ¼ 915 kg/m3, 1506 ql 6 550 (kg/m3), with the diameter of the ice grains equal to

0.002 m. Table 1 gives the mean value of the equivalent radius of the RVE (corresponding to ql ¼ 350 kg/m3

and �nc ¼ 3:5), its minimal value (corresponding to ql ¼ 550 kg/m3 and �nc ¼ 5), and its maximal value

(corresponding to ql ¼ 150 kg/m3 and �nc ¼ 2). Consequently, if the value of minðhe;weÞ is chosen greater
than 0.02 m, the condition indicated in Eq. (47) is automatically fulfilled.

The snow elements are in contact with each other and may slide downstream (Fig. 6). The constitutive

behaviour of the snowpack is modelled by a shear contact law, allowing the contact between each pair of

adjoining snow elements to be described.
3.2.3. The snow avalanche structure

3.2.3.1. Technological elements of the structure. The snow avalanche structure is composed of several panels

of net sheet, connected to both the upstream anchors and the poles. The net sheet is composed of a set of

metallic net panels (Fig. 7). Initially, each panel has an isosceles geometrical shape, defined by three

perimeter wires. The base side is distinguished from the two lateral sides. The three vertices of every panel

are connected to both the poles and the upstream anchors. The poles are stabilized with the downstream
wires, which are connected to downstream anchors. Each metallic net panel is composed of a regular mesh

of intersected metallic wires. These wires are fixed at each connection point. It will be assumed that each

single wire belonging to the strained sheet keeps a linear geometrical shape between two intersection points.
3.2.3.2. Spatial description. The net sheet can be described by a set of nodes located at the intersection

points between single wires (Fig. 8). The straight lines which appear in Fig. 8 between each pair of adjoining

nodes are merely fictitious: the structure is completely described by a set of nodes. This means that the
1

ions in the equivalent radius

Minimal value Mean value Maximal value

ivalent radius 3
4p ve
	 
1=3

0.69 cm 0.91 cm 1.45 cm

Fig. 6. Spatial description of the snow mantel.
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contact between the snowpack and the net sheet will occur only at the nodes of the mesh and not along the

lines joining the nodes. The nodes located at the connection points between the net sheet and the poles or

the anchors will be assumed to be fixed. Even if the structure gives rise to considerable deformation, it must

be noted that strains within every individual wire remain very limited. Thus, the behaviour of wires belongs

to the elastic domain. In this approach, the mass of the net sheet is equally concentrated on each node,

whose mass is denoted m. Initially, as suggested in Fig. 8, the net sheet is assumed to have a paraboloidal

shape.
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3.3. Mechanical description

3.3.1. Lagrangian description of the snowpack

Each snow element I , which belongs to the layer l, is in contact with four other neighbouring elements
In (Fig. 9). It is subjected to the action of both its weight and a set of four contact forces T n

I . If this element

is in contact with a node belonging to the net sheet, it is also subjected to the reaction force RI .

The main feature of this approach, which is explicit in time, is to follow the behaviour of each snow

element during its movement. Contrary to a discrete description, the contact forces between each pair of

neighbouring elements are calculated from a continuous formulation relating the shear stress to the shear

strain rate. Thus, using the definition given by Billaux and Cundall (Billaux, 1993), this approach is con-

sidered to be Lagrangian.

The kinematics of each snow element is completely described by a single parameter uI (henceforth the
subscript 1 will be omitted from term u), which represents the total displacement of element I in direction
~k1. The displacement uI of snow element I belonging to the layer l, is given by Eq. (48). If this element is not

in contact with a node belonging to the net sheet, the reaction force RI is nil: RI ¼ 0. In this case, the snow

element flows through the net sheet.
qlVe€uI ¼ qlVeg sinwþ
X4
n¼1

T n
I � RI ð48Þ
If the snow element is located upstream from a pole, Eq. (48) remains valid by setting uI ¼ 0; the snow

element is blocked, and a reaction force RI ¼ qlVeg sinwþ
P4

n¼1 T
n
I appears between this element and the

pole. Reaction forces existing between a pole and the snow elements in contact allow the pressure applied

by the snow mantel to the pole to be assessed.
The contact force T n

I is computed by integrating the shear stress along the surface at the interface of the

two neighbouring elements I and In. To exemplify this, let us now consider the case of the two elements I
and I1. The shear stress ��r13ðI ; I1Þ existing at the interface of the two elements can be assessed by inter-

polation between points A and B (Fig. 10):
��r13ðI ; I1Þ ¼ 1
2
ð��r13ðAÞ þ ��r13ðBÞÞ ð49Þ
and thus the contact force T 1
I between the two elements I and I1 can be easily deduced:
T 1
I ¼ Lwe��r13ðI ; I1Þ ð50Þ
From general equations (43)–(45), ��r13 depends only on ��e12 and ��e13. These two terms can be assessed from the

displacements of the elements belonging to the common neighbourhood of I and I1 (Fig. 10).
Fig. 9. Description of snow elements.



Fig. 10. Lagrangian description of snow elements.
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Indeed, the shear strain ��e13ðAÞ at point A, for instance, located at the centre of the four elements I , I1, I2,
and I5, can be assessed by the following formulation using the Gauss approximation (Billaux, 1993):
��e13ðAÞ �
1

2

uI1 � uI
he

�
þ uI5 � uI2

he

�
ð51Þ
Likewise, the shear strain ��e13ðBÞ at point B is given by:
��e13ðBÞ �
1

2

uI1 � uI
he

�
þ uI8 � uI4

he

�
ð52Þ
The same method can be used to compute the three other terms T 2
I , T

3
I and T 4

I .

3.3.2. Discrete description of the net structure

Each node J belonging to the net sheet is connected to six neighbouring nodes Jp (Fig. 11). In every

fictitious individual wire, joining neighbouring nodes J and Jp acts an elastic force F p
J .

The vectorial location ~X J of node J (mass m), in contact with snow element I , is given by Eq. (53):
m €~X J ¼ m~g þ
X6
p¼1

~F p
J þ RI

~k1 ð53Þ
with
~F p
J ¼ ESJ

k~X Jp � ~X Jk � lop
lop

~X Jp � ~X J

k~X Jp � ~X Jk
ð54Þ
J

J1

J3 J4

J6

J5J2

Fig. 11. Description of the net sheet: the set of neighbouring nodes.
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where SJ is the cross-section of the individual wires joining nodes J and Jp, lop is their initial length, and E
is the elastic modulus of the steel. It is assumed that F p

J is a tension force; thus, if k JJ
�!

pk < lop, F
p
J is equal

to zero.
3.3.3. Mechanical interaction between snowpack and net structure

Modelling the interaction between a snow mantel and a structure appears to be a boundary problem in

which the structure is a complex boundary for the snowpack. The interaction between the snowpack and

the net sheet is obviously not reduced at a single point, as suggested previously. In fact, the wires that

constitute the net sheet have a cross-section which must not be ignored. Furthermore, because of complex

local phenomena occurring at the interface between the net and the snow, the actual open sections through
the wire mesh may be reduced. This suggests that each node J is associated with a closed section (denoted

J ), so that any snow element that is in contact with this section does not go through it (Fig. 12). This

expansion of sections around nodes accounts for the longitudinal surface of the different wires. Indeed, in

the proposed approach, wires are described only with nodes located at the connection points. However,

interaction between the net and the snowpack can also occur on the longitudinal part of the wires between

two adjoining connection nodes. From a physical point of view, as the cross size of the wires is quite small,

snow in the vicinity of the wires tends to glide around them, inducing volumetric strains in the snow, as well

as a dissipation of energy. In the proposed model, kinematic assumptions concerning the snowpack do not
account for this glide. Thus, assuming that some snow elements are blocked upstream of wires turns out to

be an expedient manner to take a dissipation of energy into account: this dissipation of energy takes place

at the interface between the moving snow elements and those blocked upstream of the wires.

Furthermore, it is assumed that during contact between a snow element I and a closed section J , this
section does not penetrate the snow element. Thus, at each time, the incremental displacements in direction
~k1 of the two bodies I and J are equal:
d~X J �~k1 ¼ duI ð55Þ
This kinematic condition makes it possible to model the slowdown of the mantel, and Eq. (55) allows

reaction force RI to be computed.
3.3.4. Boundary conditions

The snowpack has a parallelepiped shape, and thus appropriate boundary conditions have to be ad-

joined on the six-plane surface. The frontal plane is in interaction with the structure and was described in

the previous section. At the interface between the mantel and the soil, the Coulomb friction law is intro-

duced, so that the sliding between the two bodies can be modelled; this law requires the friction angle us to

be known. The back plane and the upper surface of the mantel are assumed to be free, which means that no

stresses are applied to them. The two lateral planes can be chosen free or blocked.
Fig. 12. Introduction of a closed section located at each node.
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4. Concluding remarks

This paper has proposed a multiscale approach for inferring the global behaviour of a snow cover from

its local properties. Although a very simple model is used to describe the local behaviour of the grain bonds,
a complex overall behaviour is obtained by taking a statistical description of the fabrics into account. One

major advantage lies in the fact that only a few parameters are included in this model. However, it must be

noted that this model is based on the following assumptions:

• The mechanical behaviour of a snow volume element depends only on the mechanical behaviour of the

inter-granular bonds belonging to this volume.

• The local behaviour of the inter-granular bonds, described as a quasi-brittle material, is designated by

a non-linear tensile–compressive visco-elastic model.
• Shear strength of grain bonds is ignored.

• The strain localization operator was inferred using an affine approximation from the macroscopic strain

tensor.

• The local fabric of the medium is described well by both the mean coordination number and the distri-

bution densities fh and fu of inter-granular bond orientations.

Furthermore, the constitutive equations have been entirely determined in the case of a snow mantel in

interaction with a flexible structure. As a first step, a local simple linear visco-elastic law was used, allowing
the explicit analytical constitutive formulation to be inferred. But the extension to the non-linear case is also

proposed. More complex local models should be examined in the future. As a direct experimental study of

the snowpack remains a very difficult task, it should be meaningful to use a structure in order to indirectly

obtain information related to the snowpack. In these conditions, the net structure acts as a macroscopic but

relevant sensor. Mechanical modelling of the interaction between the snowpack and the net structure has

led to a Lagrangian approach based on the discrete-element method. This type of description seems to be

meaningful and of a great interest for cable structures such as avalanche net structures. The relevance of

discrete modelling of the snowpack is closely related to the validity of the proposed form of the dis-
placement field of the snowpack. As confirmed in Part II, which follows, the complete modelling method is

capable of a very good simulation of the forces acting in the different parts of the structure.
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