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Abstract

The search to improve protective techniques against natural phenomena such as snow avalanches continues to use
classic methods to calculate flexible structures. This paper deals with a new method for designing avalanche protection
nets, based on a coupled analysis of both the net structure and the snow mantel using a coupled Lagrangian—Discrete
approach. As a thorough analysis of the behaviour of a snow cover in interaction with a structure is required, a
multiscale approach allowing the overall behaviour of the snowpack to be inferred from the local properties is pre-
sented. The constitutive equations are obtained from a statistical description of the mantel, regarded at the micro level
as a cohesive granular assembly.
© 2003 Published by Elsevier Ltd.
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1. Introduction
1.1. Mountainous areas and snow instabilities

Mountainous areas are generally characterized by strong snow precipitations. Furthermore, these re-
gions have common geomorphological features: erosion has formed a set of valleys whose slopes are often
steep. With the effects of gravity, a snow mantel on a slope is likely to develop mechanical instability. Its
development depends on several factors such as the rheological properties of the material, the type of soil,
the topography, and the climatic conditions. Snow instability induces many natural phenomena charac-
teristic of the mountain environment during winter: avalanches, snow mantel creeping, etc.
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1.2. A sensitive socioeconomic context

The Alps remained a relatively isolated region up to the beginning of the 20th century. But industrial and
tourist development has led to considerable pressure from local planning needs. Several major roads have
also been constructed in Alpine valleys to allow economic exchanges between European countries. Fur-
thermore, because of the presence of water (rivers, streams) associated with the geomorphological features
of the area, hydroelectric power plants have been set up along the main rivers. Mining concerns in many
areas must also be mentioned. In addition, a substantial industrial network based on electrochemical
production has developed to take advantage of these resources.

During this industrial conquest of a part of the Alpine territory, tourist activities increased. In the second
part of the last century, urban dwellers began visiting mountain areas for recreational activities: winter
tourism, in connection with the surge in skiing, has greatly contributed to this development. In spite of
constraints imposed by this particular environment, a large network of infrastructures has been constructed
over the past few decades in mountain areas. But these urban facilities are often exposed to hazards such as
avalanches. Because avalanches can be highly destructive, the concept of vulnerability must be taken into
consideration in these urban areas. Nevertheless, the notion of risk, defined as the product of vulnerability
per alea, has not yet been accepted by society, which has led the fundamental and applied research com-
munities to develop both specific methods and tools to ensure better management of risk.

1.3. A case of active risk intervention: snow avalanche net structures

Risks stemming from snow instabilities can be reduced in different ways. Active risk intervention aims to
prevent the failure of the snow mantel and the resulting avalanche; this is possible by stabilizing the snow
mantel. Passive intervention does not prevent the triggering of the avalanche, but aims to control the
avalanche flowing terms of avalanche direction, velocity, width, and height. Snow avalanche net structures
belong to the category of active intervention. This paper deals with modelling the interaction between a
snow mantel and this type of structure. Because of their linear shape, snow avalanche net structures are
often a well-adapted solution to such problems caused by local topographic conditions. These structures
are composed of a set of panels of metallic net, held by poles and anchors (Fig. 1). The downward
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Fig. 1. Example of a snow avalanche net structure (EI Montagne).
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movement of the snow mantel is composed of a sliding motion (translation displacement of the entire
mantel, considered parallel to the ground surface) and a reptant motion (creeping deformation with set-
tlement). This complex movement directs a strain field and then a stress field into the net sheets. Conse-
quently, a reaction force is applied to the snow mantel; this force results in a stabilization effect.

1.4. Goals and methodology

From a fundamental research point of view, the mechanical interaction between the snow mantel and the
structure requires a coupled mechanical analysis. Avalanche net structures are an example of flexible
structures. At the equilibrium state, the distribution of forces depends heavily on the strained geometrical
shape of the net sheets (Nicot, 1999; Nicot et al., 2002). This feature is the main difference between flexible
and rigid structures (Larsen, 2000). The major advantage of our approach is that the final geometrical
shape of the net sheets is not assumed; generally, other methods consider a geometrical shape that is not
computed, but assessed from in situ observations (Kern, 1978; Margreth, 1995). It is of great interest to
predict this final configuration as accurately as possible, because it strongly influences the distribution of
forces into the structure. In this context, the new approach introduces the currently used tools and concepts
from both solid mechanics (Lemaitre and Chaboche, 1988; Sidoroff, 1984) and numerical modelling
(Cundall and Roger, 1992) in order to compute the final geometrical shape. This approach is relevant to the
field of avalanche control for the following reasons:

o Initially proposing the final geometrical shape of the structure (net sheets and wires) remains problem-
atic.

e Results from classic methods show that there is a strong relationship between the final geometrical shape
and the distribution of internal forces.

Furthermore, the final geometrical shape of the net sheets can be computed only if the loading applied by
the snowpack to the structure is correctly described. This requires a thorough description of the behaviour
of the snowpack in interaction with the ground, the meteorological conditions, and a flexible or rigid
structure.

In what follows, an original method of constitutive modelling of a snowpack will be proposed, based on
a multiscale approach allowing the overall behaviour of the snowpack to be inferred from the local
properties. Then the case of a snowpack in interaction with an avalanche structure will be considered and
a Discrete—Lagrangian approach will be proposed.

2. Constitutive modelling of a snowpack

This paper deals only with snow mantel creeping. As mentioned above, improving defensive structures
such as avalanche net structures requires a thorough description of the constitutive behaviour of the
snowpack. In the past, many authors have proposed different models using phenomenological approaches
(Mellor, 1975; Salm, 1975; Desrues et al., 1980), but these models introduce numerous parameters which
are often difficult to calibrate. Similarly, Gagliardini (Gagliardini and Meyssonnier, 1997) has proposed
inferring the behaviour of a dense snow mantel from the behaviour of polycrystal ice. The importance of
the snow micro-structure to deformational processes has been known for many years (Bader et al., 1939;
Kragelski and Shakhov, 1949; Hansen and Brown, 1987; Brown and Edens, 1991). The assessment of the
macroscopic properties of a snow mantel from a local description of the micro-structure can be a relevant
alternative in as far as the structure at the micro level can be regarded as a granular assembly. Nevertheless,
developing a constitutive model using micro-structural properties remains to be done (Lewis et al., 1997).
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This paper proposes to develop this kind of multiscale approach, using a statistical description of fabrics.
As an application, the case of a snowpack in interaction with a flexible structure is considered.

2.1. Geometric setting

We will consider the case of a snowpack lying on a uniform slope (i). It is assumed that the surrounding
ground surface can be described by a plane (II). The set of equations in the following sections will be
written in the orthonormal base (k1, k,, k3); (Fig. 2):

/:c:l is the direction of the main slope of (I1);
k» is the horizontal direction of (I1);
k3 is the normal direction to the plane (IT).

In this base, coordinates of any point M will be denoted (x;,x;, x3).
We denote L the length of the snowpack, w its width, and H its height. It is assumed that A is uniform.

2.2. General methodology

After snowfalls have occurred, gravity effects occur and the physical structure of the snowpack changes
in interaction with the ground and the meteorological conditions. Rather rapidly, initial snow crystals are
transformed into ice grains and the resulting snow cover can be considered as a porous material made of ice
grains and air (Duva, 1994). Thus, it is assumed in the proposed approach that the snow cover can be
described by a sintered granular medium: each ice grain is modelled as a rigid particle. Between neigh-
bouring grains, contacts may occur and solid bonds may be created. Generally, on a small scale, the
properties of the materials, whose size is equal to the size of the elementary particles described as rigid
bodies, are quite simple (Cambou, 1998). Complexity appears on larger scales (macroscopic scales), because
purely geometrical non-linear effects occur inside a large number of particles. As a first approximation, we
postulate that the mechanical behaviour of a snow volume element depends only on the mechanical
behaviour of inter-granular bonds belonging to this volume. This kind of approach was initially used by
Bazant for concrete materials (Bazant and Prat, 1988); more recently, Bartelt has extended this approach
to the case of snowpacks (Bartelt and Christen, submitted for publication).

Surface 7
of the snowpack -~
- H
—
/// -
,/" -
/// -~ 1o 2l
-~ - 8 s "
,'/’/ i
_d e Ground surface
o i (r1)

Fig. 2. Definition of the orthonormal base.
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The mechanical behaviour of ice bonds can be expressed in a straightforward manner. This paper derives
the constitutive behaviour of the snowpack on a macroscopic scale from a microscopic scale description,
taking a statistical description of the fabrics into account.

2.3. Microscopic description of the medium

Each ice bond can be described as a tangent thin plane neck. Hereafter, the cross-section of the neck is
denoted “contact plane”. Under gravity effects, a stress state is generated at each point of the neck. As the
magnitude of the neck is very small, the stress state can be assumed to be uniform. This stress state results in
a contact force F° whose normal component F, and the tangential component , to the contact plane are
expressed as follows:

F, = &S (1)

F=3S (2)

where ¢ is the normal component and 7 the tangential component of the stress acting in the contact plane,
and S is the surface of the cross-section of the neck (Fig. 3).

On the microscopic scale, the behaviour of grain bonds is mainly governed by the behaviour of ice.
Several authors such as Meyssonnier and Gagliardini have developed meticulous advanced models for
describing the behaviour of ice polycrystals (Gagliardini and Meyssonnier, 1997, 1999). As a first
approximation, shear strength is ignored here with regard to compressive or tensile strength. Generally, the
local behaviour is described well using a function f relating &, & and their first time-derivatives & and &
jN’(&7 6,2, 5) = 0. For instance, a non-linear visco-elastic tensile—compressive behaviour is described by the
well-known relation:

& A Yice )
i - 3
Kice N (”ice > ‘ ( )

where Kj. is the Youngs modulus of the ice, and o;,, an exponent taking non-linear phenomena into ac-
count. When ¢ = 1, . 1S the viscosity of the ice; otherwise, it is a sort of non-linear viscosity. This non-
linear Maxwell model stands as a generalization of Glen’s law, which ignores the elastic part of the strain.
Glen’s law is particularly well adapted to describing creeping phenomena. However, relaxation phenomena
are not accounted for by this model. In order to develop a constitutive formulation for snow material that is
as general as possible, it would be of interest to consider the non-linear Maxwell model.

In this paper, local strain rates ¢ are assumed to be large enough (typically, ¢ > 10 s~!) for grain bonds
to be regarded as a quasi-brittle material: fracture may occur when grain bonds undergo tensile loading.

Grain 1 ~ Grain 2
S
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e S
C, (&5}
I
P SN >

Fig. 3. Ice bond between two grains in contact.
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Yield is likely to occur for lower strain rates, but as a first approximation, this case is ignored in this paper.
In the case of a snowpack subjected to a creeping deformation, the order of magnitude of local strain rates,
which are different from the usual strain rates of a snowpack, is equal to 10~ s~! (Bartelt and Christen,
submitted for publication). Thus, the criterion failure can be expressed as follows:

6<0; (4)

where d; is the failure stress. Ideally, the failure stress should be given as a function of the size of defects
taking place within the bonds; assessing the size of defects in terms of reliable local indicators such as stress
or geometric parameters is as yet too complex. As a first approach, we consider that the failure stress is
uniform within the snowpack because the lack of research in this domain makes a more accurate approach
impossible.

Hereafter, for a given snow cover in a given state, it is considered that failure may occur between contact
grains. But it is assumed that no new bond can be created between contact grains. Thus, the density of grain
bonds is a time-decreasing function.

2.4. Micro—macro description of the medium

2.4.1. Definition of the representative volume element

Hereafter we consider a volume element v, around a point M, in which the number of grain bonds N, is
large enough so that this volume can be described as a continuous material. Typically, N, = 1000 is a
convenient order of magnitude. In such a frame, the norrﬂ direction 7 of the different contact planes is
assumed to be a continuous variable: point N, defined by ON = #, describes a half sphere continuously. In
the field of granular media, v, is usually denoted ‘“‘representative volume element” (RVE) (Masson and
Martinez, 2000).

As shown in Fig. 4, the coordinates of # can be given as a function of both angles 6 (longitude) and
¢ (colatitude):
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Fig. 4. Continuous description of the normal direction of contact.
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n1 (0, ¢) sin ¢ cos 0
i(0,¢) = | m(0,¢) | = | singsind (5
n3(0, ¢) cos ¢

where both 0 and ¢ are continuous variables in [0, 7t].

2.4.2. The macroscopic stress tensor

Considering a representative volume element located around a given point M, the macroscopic stress
tensor & is computed from the local contact forces F between each pair of ice grains in contact in the RVE.
& and F° can be related by the well-established Love formula of homogenization (Caillerie, 1995):

= 1 c e
GUZU_ZF;'IJ' (6)

where £} is the i-component of the contact force F©, I 1s the j-component of the branch vector I& joining the
centres of grains in contact on contact ¢, and the sum is extended to all the contacts occurring in volume v,.
As F¢ = (0, ¢)Si(0, ¢) and I = 1(0, p)#(0, @), Eq. (6) can be rewritten as:

Gy =— / /0 S1(0, ) (0, 9)ni(0, )n;(0, @) (0, )v, sin p dOde ()

where w(0, ¢)v, is the number of grain bonds in the direction defined by angles 0 and ¢ and belonging to
volume v,. The length /(0, @) between the centres of the two grains in contact is here assumed to be identical
for any grain bond, so that /(6, ¢) = I (Fig. 3). Furthermore, w(0, ¢)v, can be related to the probability
density fy,(0, @) for having a grain bond in direction 7, , with 0 < 0<0+doand ¢ < p < @ +do:

a0, ) = A ®)

Assuming 6 and ¢ to be statistically independent variables, f;, can be written as the product of both

probability densities f3(0) and f,(¢):
Jo.0(0,0) = fo(0)1,(0) )

so that Eq. (7) can be rewritten as:

- Y .

Gy = / - Ny - (0, 0)n; (0, 0)n; (0, 0)fo(0)f,(¢) sin pddde (10)
0,1 e

Assuming the volume v, of each ice grain to be approximated by a cylinder, v, = IS, and denoting N, the

number of grains belonging to the RVE, p,.. the density of ice, and p, the density of the snowpack at the

considered point M, the mass balance applied to the RVE provides:

Ngvgpice = Ve Py (11)
Finally, combining both Egs. (10) and (11) gives:
- Ny ps .
oy = / ot ~ pp (0, 9)ni(0, 9)n;(0, 0)f0(0)1,(¢) sin p d0de (12)
0, g Fice

2.4.3. The strain localization relation

Let 6(0, @) be a statically admissible distribution of stress acting at contact points in the RVE. This
distribution directs the distribution of strains £(0, ¢), which is then kinematically admissible. The defor-
mation energy E (0, ¢) associated with the contacts in direction 7 (6, ¢) is given by:
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B(0.0) =02 5(0.0)3(0.0) (13)

and thus the total deformation energy into an RVE can be written as follows:
Ey= / /[ 0,000, 9) (1)1, ) sin 9 d0 g (14)
0,7

At the macroscopic level, both distributions (0, ¢) and (0, ¢) are associated with the macroscopic tensors
¢ and . The macroscopic deformation energy is given by the following equation:

Ed = Z vea_-lj;_»ij (15)
ij
Combining Egs. (12) and (15) provides:
- Ny py = .
Ey= / /[ L) (ﬁb gsi,ni<0,¢>n,<e,w)‘fe(e)fw((p) sin pd0de (16)
0,1 ij g Fice

But the “Hill macro homogeneity equality” (Hill, 1967) implies the equality of deformation energies on
both scales, thus, E4 = E4. Given that this relation must be fulfilled only for any statically admissible field
and not for any field (0, @) it is not possible to derive the usual result in a rigorous mathematic manner:

8 Ny Py x—-=
(0,9) =37 2 > Tm(0,9) (0, 9) (17)
g FMice

Nevertheless, as an assumption, the expression of local strain given in Eq. (17) will be admitted, but it is an
affine approximation of the local strain from the macroscopic strain tensor (Bardet, 1998), which means
that the static field (6, @), associated with the strain field £(0, ¢) defined with Eq. (17) may not ensure local
momentum balance of grain bonds.

In general tensor notations, Eq. (17) can also be rewritten as:

50.0) = 2 (707i(0, 9)) - 7(0, ) (18)

g Fice
We denote this relation “‘the strain localization relation” because it is the local strain in a given direction
(6, ¢) defined from the macroscopic strain tensor &.

2.4.4. Changes in the medium fabrics

In the proposed approach, the RVE is a statistically homogeneous medium. The location of each ice
grain in the RVE is not known, but the direction of grain bonds is statistically described. In this model, the
structure at the micro level (fabrics) is completely described by the distribution functions fj and f,,. Initially,
just after snowfalls, the spatial distribution of all the grain bonds in the snow cover is approximately
isotropic. Rather rapidly, as gravity effects occur, an anisotropy is created, so that the distribution functions
are no longer uniform.

We will now investigate a mantel lying on a uniform slope, whose width is much greater than its height,
in which the equilibrium metamorphism has occurred; during this metamorphism phase, initial snow
crystals are transformed into ice grains and contact bonds may develop between neighbouring grains. We
consider that at the end of this development, the state of the mantel can be properly defined by the dis-
tribution functions f; and f;), thereby verifying:

000 =1 (19)

T
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folm—0) = 1,(¢) (20)

The changes in a snowpack will now be analysed from this initial state, which is described by functions f})
and fg. As gravity effects direct a complex downward motion on the snowpack, including creeping and
sliding, grain bonds are likely to be broken and the current functions fy and f,, may change. Thus, in the
more general case f # f} and f,, # fg. Eq. (19) means that the directions of contact are equally probable in
each plane (x,x,), whereas Eq. (20) means that each plane (x,,x3) is a symmetry plane.

The changes in a snowpack in which the rotation of ice grains can be ignored are now the subject of
analysis. There is no rotation of the grain bonds if rotation of the grains is ignored; both distribution
functions f; and f;, will evolve depending only on the failure which may occur in grain bonds. From above,
the contact in direction 7(0, ¢) exists while (0, ¢) < &,. From a given state of the medium’s fabrics, which
is completely described by both distribution functions f; and f(g, it is possible to describe the changes in the
medium’s fabrics induced by the change in strains. Indeed, current distribution functions fy and f, can be
easily related to f; and f g. It is therefore useful to introduce the binary function 4(0, ¢), defined as follows:

Initially, V(0, @) 2(0,¢) =1

After, as failure may occur, the binary function A(0, ¢) is likely to evolve:

If 6(0, p) = G, then A(0,¢9) =0

Thus,

NO
FOy(0) = 310,01 O 3(0) (21)
where N} is the initial number of grain bonds existing in each RVE (N} ~ 1000). From Eq. (21), Eq. (12)
can be rewritten as:

_ N,? Ps

Gij =

/ / 50, 0)2(0, 0)n.(0, 9, (0, 9)£2(0)1 () sin 9 dOdep (22)

g Pice

This expression relates the macroscopic stress tensor to the medium’s fabrics.
2.5. Mechanical behaviour of the snowpack on the macro level

2.5.1. General scheme and further approximations

Using previous relations, it is now possible to establish the general scheme, allowing both the macro-
scopic stress tensor and the strain rate tensor to be related. The scheme depicted in Fig. 4 shows how the
stress tensor can be deduced from the strain rate tensor. It must be noted that this scheme is entirely
reversible but then requires further appropriate relations to be added. In this paper, the computation of the
strain rate tensor from the stress tensor will not be considered.

Whichever local behaviour relates local variables, the scheme proposed in Fig. 5 is consistent and
reliable. But non-linear models such as the non-linear visco-elastic tensile~compressive model described by
Eq. (3) do not allow an analytical solution to be inferred. In the past, several authors have discussed the

m.

—_— £0,)) —— 5(0,9p) —m >
Strain localisation Local behaviour: Stress
operator: Eq. 17 Eq.3 homogenization:
Eq. 22

Macroscopic behaviour

—_— Q

Fig. 5. General scheme relating both the stress tensor and the strain rate tensor.
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non-linear properties of ice; even if previous studies have essentially dealt with polar ice, it seems that the
behaviour of ice subjected to low stresses could be assumed to be linear, at least as a first approximation
(Lliboutry and Duval, 1985; Pimienta, 1987; Castelnau, 1996). The lack of knowledge on the bond-scale
structure of the ice makes it difficult to calibrate the exponent o;... For the purposes of example, analytical
constitutive formulation will be proposed considering the linear case: o, = 1. In the case where o, # 1,
only the general form of the constitutive equations will be given. The influence of the exponent o, will be
examined in Part II.

2.5.2. Definition of the constitutive tensor
From the linear Maxwell relation (o = 1),
tained by integration:

&Zf) + &(w?f) = £(0, ¢), the expression of (0, @) can be ob-

Kice s

“Kice ! Zice g . .
(0, 9) = Kieee " / e i(0, 0)(&) de (23)

Setting ¢(4) = ff[oﬂ]z 40,9)17(0)15(¢p)sin pd0de, as N, = N)¢(2), combining Egs. (18), (22), and (23)
gives:

K

0 2 “Kice U Kiger=
G = <&&) ¢(2)Kiceemce’2{/o e g4y (E)dE- (--2) ()

N&’ Pice k.l
<[ /[ 0RO, o0, om0, o0, 0) singod@dq)} (24)
Let
= ! Kice p =
Ekl:/ eliee” &y(&) dE
0
and

A= [ 00O Ao om0, (0, 0. ) sin 9 a0

Thus, on the one hand,

N}()) p 2 ’Kice[ =
;= | = — | ¢(A)KiccC e AijiiEn (25)
! <Ng Pice ) ; !

and on the other hand, from both Egs. (17) and (23):

. Ny p, ice —
510.0) = (3 22 ) 00Kue™" S (0. om0, 0)E (26)
g Fice k,

Aqju 1s a 4-order tensor, denoted ““constitutive tensor”. Thanks to the symmetry of both &;; and &; tensors,
A can be contracted into a symmetric 6x6 matrix M;; relating these vectors &; = [011, 02, 033, V2615,

V2613,V205] and E; = [E\1, Ex, Exz, V2E12, V2E13,V2E»3):
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A Api Az V241211 V24131 V240 |
Ann A Az V241 V2413 24y
Aniss A3 Ay V241 V24 V24n

My V241 V24mn V243 2400 241312 24512 @7)
V2415 V24ms V243315 24103 241313 242313
| V241123 V243 V2433 241 24133 24533 |
The following constitutive relationship is finally obtained:
2
G = <N'9 pS) B (1)K > M,E; (28)
Ng pice j

— . . . . 0 2 . . . .
M ;; is denoted the “constitutive matrix” and the term C, = (N—” ”—) ¢(A) is a homogenization coefficient,

NX ice
which is generally lower than 1. ’

2.5.3. Calculation of the constitutive matrix

In order to exemplify the form of the matrix M, the different terms are calculated considering the initial
state of the snowpack (fy = f¢ and f,, = l/?). In this case, for any values of 6 and ¢, (0, @) is equal to 1. It
may be established that the constitutive matrix can be written as follows:

[ 2S5 +Ss 1(85 —Ss) 0 0 0 7
+Ss 385 1(85—Ss) 0 0 0
= _ |38 =8) (S =8) 1-28%+4S8 0 0 0 )
0 0 0 Ss 0 0
0 0 0 0 S-S5 0
L 0 0 0 0 0 S3 — S5 |
where S, stands for a p-order moment of distribution function f(g
Sy = /0 fo(@)sin” pde (30)

It must be noted that M;; is a pseudo-isotropic transverse matrix, with only two independent coefficients.
Furthermore, if the distribution function f(g is assumed to be uniform, as fon f(g((p) sin pdgp = 1, it follows
that £ (¢) = 1/2; the different values of S, can be directly calculated: S; = 2/3 and S5 = 8/15.
Thus, as depicted in Eq. (31), M;; is a perfectly isotropic matrix. This result is absolutely consistent,
because the material structure of the snowpack is also isotropic.

31100 0
1 3100 0

= 1]/1 13000

M=310 00 2 0 0 (31)
000020
00000 2

2.5.4. Asymptotic behaviour

Interestingly, in order to examine the structure of the constitutive model, a simplistic case is considered.
In the general case, this constitutive model was recently more thoroughly analysed by Nicot (submitted for
publication). If the viscosity of ice is supposed to be infinite, the behaviour of the material becomes a purely
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quasi-brittle elastic behaviour. Eq. (28) can be rewritten as &; = CyKice Y. Mg with & = [e,
€2, €33, V2812, V2613, V/2623). It must be noted that each term of the matrix of elasticity is the product of the
Youngs modulus of ice Kj. by the homogenization coefficient and the term M ;, which depends only on the
distribution functions fj and f,,. In the particular case where the medium may be isotropic (f3(0) = 1/m and
fo(@) = 1/2), the behaviour is also isotropic. This requires the failure stress &, to be infinite. In this case, the
equation 6; = CpKice ), M;;; can also be expressed in the following manner, g;; = Gl (2¢,; + 1r(2)5y),
allowing Lame’s constants p and 4 to be calculated: 2 = u = C,Kie./15. Thus, the global Young modulus K
and Poisson coefficient v, can be inferred for the medium on the macro level: K, = %Kice and v, = 1/4. It
must be noted that these results are in perfect agreement with those obtained by other authors (Chang and

Liao, 1994; Cambou et al., 1995), when the local tangential stiffness is ignored.

3. Application to the case of a snowpack in interaction with an avalanche structure
3.1. The constitutive relation for the snowpack

3.1.1. The macroscopic strain

The snowpack is composed of n; layers, whose height (%#;) and length (L) are uniform. Each layer is
associated with a meteorological event: both density p, and mechanical parameters related to the mantel are
assumed to be uniform within each layer /. The height of the entire mantel is given by the relation:

H=> I (32)
I=1

Width w is assumed to be substantially greater than both height A and length L. Thus, by denoting
(uy, us, u3) the components of the displacement field i, u, can be ignored with regard to both u; and u;.
Furthermore, as a first approximation, component #; does not depend on position x;. Also assuming that
the structure does not substantially modify the settlement of the snowpack, it can be postulated that u3; does
not depend on positions x; and x,. Finally, the displacement field can be defined as follows:

(11 (x2, %3, 1)
0 (33)

L u3(x3,0)

1
|

In these conditions, the strain rate tensor g, for small deformation, is given by:

10 1%
B 0 2 0x, 2 0x3
s | L
é= |35 O 0 (34)
10 diy
2 Ox3 0 Ox3

From a physical point of view, both height and density profiles are time dependent; but in the proposed
approach, the settlement phenomenon is assumed not to have a strong interaction with the creeping
phenomenon. Furthermore, it seems to be relevant to consider that the loading applied by the snowpack to
the structure is mainly caused by the creeping phenomenon, and not by the settlement phenomenon. Thus,
the creeping phenomenon is investigated by taking into account the final values of height H and density p,.
These data can be assessed by specific numerical tools such as CROCUS (Brun et al., 1989). This implies
that any point M belonging to the snowpack is subjected to a displacement # = u;(x,,x3, t)l?l in a single
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direction (%1), which only depends on coordinates x, and x;. Thus, the considered strain rate tensor has the
following form:

i)
2

3}
o3}

i)
3

[STE

1
2

0
i

ol
Il
o
B

x
i

(=]

oy A
0 0 (35)
0 0

= =

o

X3

Furthermore, a numerical tool such as CROCUS enables both the initial mean coordination number 7. and
the mean volume v, of ice grains to be assessed; this allows both N, and N} to be related as: NY = n.N,, and
thus, taking Eq. (11) into account, the RVE can be deduced with the following equation:

0 .
vy b Pice (36)

Ve = Uyg
ne P

It must be noted that p,, as well as 7., may be a function of the considered position (point M).

3.1.2. The constitutive formulation

3.1.2.1. The linear case. In the most general case, function A(0, ¢) is equal to 0 or 1, so that the general
expression of M given by Eq. (27) has to be considered. In order to exemplify the constitutive formulation,
the distribution function f,, is assumed to be uniform, so that f(g((p) =1/2 for any value of ¢. From
Eq. (28), making use of the particular form of the strain rate tensor given in Eq. (35), the following relation
can be derived:

—Kice fr— 4 ’Ev: fr— ! &:?
6i = 2ChKiceemt (MM\/ e”icegélz dé + MiS e'7iceg813 dé) (i = 1, ey 6) (37)
0 0
In particular, the two shear terms are given by:
_ sy (= 1 Koo e A
G12 = 2C1Kijce€ Miee M44/ eliee” g1 d +M45/ eec” &13dE (38)
0 0
and
_ ey (= [T Ko = [ Kas
013 = 2C1Kice€ e (M54/ eliee” &1, dE + Mss/ Clice” €13 dﬁ) (39)
0 0

The calculation of terms ﬁ44, ﬁ“ and ﬁﬁ requires knowing the function A(0, ¢). This functign is relited to
the microscopic stress (0, ¢), whose expression is given by Eq. (26). As only the two terms E|, and E\; are
not nil, it can be inferred that:

_ N o\ o = =
5(0,0) = V2( 3} 2 (0K ™" (m (0. 0)m2(0,0)F 12 + 11 (0, 0)ms 0, 0)Ers) (40)
g Fice
and taking into account Eq. (5), this expression can be rewritten as:
(0, @) = Cy,cos Osin Osin® ¢ + Cy3 cos 0 cos ¢ sin ¢ (41)
where
N} p Fiee, ! Kiey=
Cii = 2{ &= | p(A)Kice€ e / e g dé (i=1,2) (42)
Ng Pice 0
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3.1.2.2. The non-linear case. Given both terms ;2 and 213, from Eq. (10), the local strain rate is given by:
- ng Py N ) . < :
&0, 0) = v ,0_ o(A) (812 sin” ¢ cos 0sin 6 + &3 cos ¢ sin ¢ cos 0) (43)
g Fice
Thus, the local stress is obtained with numerical integration of differential equation

50,0)  (d00,0)\ " .
Kice + < rlice - 8(07 (p)

This makes it possible to infer a numerical estimate of A(6, ¢), and thus of ¢, and a3:

_ 1 (N p )// i o
o= |- (0, 9)A0, @) cosOsin Osin’ o dOde 44
? 2n (Ng Pice [0,1[]2 ( ) ( ) ( )
and
o =ae (o) [ o
o3 ==—|-—=>-=— a(0,9)A(0,p)cosbcospsin“pdfd 45
13 2E<Ng o) ] Jow (0, 9)2(0, 9) ¢sin“pdfde (45)

As a general analytical solution of Eq. (3) does not exist, an analytical solution relating Elz and EB with 7},
and 7,3 cannot be derived. Contrary to the linear case, this means that the analytical expression of the
constitutive matrix M cannot be inferred.

3.2. Spatial description of the bodies

3.2.1. Phenomenological analysis

The downward movement of the snow mantel is composed of a gliding motion (translation displacement
of the entire mantel considered, parallel to the ground surface) and of a reptant motion (creeping defor-
mation with settlement). In the course of the creeping deformation, complex changes in the micro-structure
take place, which strongly govern the distribution of internal stresses (Kry, 1975). As indirect evidence,
recorded acoustic emissions show that grain bonds may fail (St. Lawrence, 1980). Thus, the multiscale
constitutive model presented in the previous sections seems to be well adapted to the analysis of the
downward movement of a snowpack.

The purpose of open structures such as snow avalanche nets is not to prevent the downward motion of
the snowpack. The practical objective is to slow down this motion in order to reduce the stresses existing in
the snowpack. This strongly limits the risk of initialization of large-scale failure mechanisms. The slowdown
results mainly from the friction between the snow cover and both the wires of the net sheet and the poles.
Other phenomena may occur at the interface between the wires and the snow, induced in part by the
thermal conductivity of metallic wires; but these are second-order phenomena that can be ignored as a first
assumption.

3.2.2. The snowpack

Any point M belonging to the snowpack is subjected to a displacement in a single direction (/?1). Thus,
each layer of the snow mantel can be described by a regular set of rigid parallelepiped elements (snow
elements), which remain parallel to direction k. By denoting 4., w,, and L, respectively, as the height, the
width and the length of each snow element ‘¢’, the volume ¥, is given by the relation:

Ve = heWeL (46)
It must be noted that the typical size of A4, (resp. w,) is very small with regard to the size of H (resp. w). But

the RVE must also be entirely contained in a snow element; this requirement must be fulfilled in order to
use the previous constitutive model, making the following condition necessary:
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3 13
min(h,, w,) > <Eve) (47)

Eq. (36) expresses v, as a function of the following parameters, whose usual values or ranges can be given:
NP = 1000, 2 < 7. < 5, piee = 915 kg/m?, 150 < p, < 550 (kg/m?), with the diameter of the ice grains equal to
0.002 m. Table 1 gives the mean value of the equivalent radius of the RVE (corresponding to p;, = 350 kg/m?
and 7. = 3.5), its minimal value (corresponding to p, = 550 kg/m?® and 7. = 5), and its maximal value
(corresponding to p, = 150 kg/m® and 7. = 2). Consequently, if the value of min(A,,w,) is chosen greater
than 0.02 m, the condition indicated in Eq. (47) is automatically fulfilled.

The snow elements are in contact with each other and may slide downstream (Fig. 6). The constitutive
behaviour of the snowpack is modelled by a shear contact law, allowing the contact between each pair of
adjoining snow elements to be described.

3.2.3. The snow avalanche structure

3.2.3.1. Technological elements of the structure. The snow avalanche structure is composed of several panels
of net sheet, connected to both the upstream anchors and the poles. The net sheet is composed of a set of
metallic net panels (Fig. 7). Initially, each panel has an isosceles geometrical shape, defined by three
perimeter wires. The base side is distinguished from the two lateral sides. The three vertices of every panel
are connected to both the poles and the upstream anchors. The poles are stabilized with the downstream
wires, which are connected to downstream anchors. Each metallic net panel is composed of a regular mesh
of intersected metallic wires. These wires are fixed at each connection point. It will be assumed that each
single wire belonging to the strained sheet keeps a linear geometrical shape between two intersection points.

3.2.3.2. Spatial description. The net sheet can be described by a set of nodes located at the intersection
points between single wires (Fig. 8). The straight lines which appear in Fig. 8 between each pair of adjoining
nodes are merely fictitious: the structure is completely described by a set of nodes. This means that the

Table 1
Variations in the equivalent radius
Minimal value Mean value Maximal value
Equivalent radius (2 ve)l/ } 0.69 cm 0.91 cm 1.45 cm

upstream

downstream

Fig. 6. Spatial description of the snow mantel.
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external
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pre-external
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external
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Fig. 7. Wordlist of snow avalanche net structures.

- INITIAL STRUCTURE -

-3 25 2 45 - 05 0 05

Fig. 8. Spatial description of avalanche net structure.

contact between the snowpack and the net sheet will occur only at the nodes of the mesh and not along the
lines joining the nodes. The nodes located at the connection points between the net sheet and the poles or
the anchors will be assumed to be fixed. Even if the structure gives rise to considerable deformation, it must
be noted that strains within every individual wire remain very limited. Thus, the behaviour of wires belongs
to the elastic domain. In this approach, the mass of the net sheet is equally concentrated on each node,
whose mass is denoted m. Initially, as suggested in Fig. 8, the net sheet is assumed to have a paraboloidal
shape.
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3.3. Mechanical description

3.3.1. Lagrangian description of the snowpack

Each snow element 7, which belongs to the layer /, is in contact with four other neighbouring elements
1, (Fig. 9). It is subjected to the action of both its weight and a set of four contact forces 7. If this element
is in contact with a node belonging to the net sheet, it is also subjected to the reaction force R;.

The main feature of this approach, which is explicit in time, is to follow the behaviour of each snow
element during its movement. Contrary to a discrete description, the contact forces between each pair of
neighbouring elements are calculated from a continuous formulation relating the shear stress to the shear
strain rate. Thus, using the definition given by Billaux and Cundall (Billaux, 1993), this approach is con-
sidered to be Lagrangian.

The kinematics of each snow element is completely described by a single parameter #; (henceforth the
subscript 1 will be omitted from term u), which represents the total displacement of element 7 in direction
k1. The displacement u; of snow element / belonging to the layer /, is given by Eq. (48). If this element is not
in contact with a node belonging to the net sheet, the reaction force R; is nil: R; = 0. In this case, the snow
element flows through the net sheet.

4
pVeiiy = p,Veg siny + Z T — R (48)

n=1

If the snow element is located upstream from a pole, Eq. (48) remains valid by setting u; = 0; the snow
element is blocked, and a reaction force R, = p,V,g siny + Zi:] T} appears between this element and the
pole. Reaction forces existing between a pole and the snow elements in contact allow the pressure applied
by the snow mantel to the pole to be assessed.

The contact force 7' is computed by integrating the shear stress along the surface at the interface of the
two neighbouring elements / and 7,. To exemplify this, let us now consider the case of the two elements /
and I;. The shear stress 6,3(/,1;) existing at the interface of the two elements can be assessed by inter-
polation between points 4 and B (Fig. 10):

o131, 1) = 3(013(4) + 713(B)) (49)
and thus the contact force 7] between the two elements / and /; can be easily deduced:
T = Lw.ens(1, 1)) (50)

From general equations (43)—(45), 613 depends only on &), and &;3. These two terms can be assessed from the
displacements of the elements belonging to the common neighbourhood of 7 and /; (Fig. 10).

Fig. 9. Description of snow elements.
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K
Fig. 10. Lagrangian description of snow elements.

Indeed, the shear strain &3(4) at point 4, for instance, located at the centre of the four elements I, I, I,
and [s, can be assessed by the following formulation using the Gauss approximation (Billaux, 1993):

= 1wy —up uy, —uy
A) ~ — 1 5 2 51
ei3(d) ~ 5 ( T (51)
Likewise, the shear strain &3(B) at point B is given by:
= L fuy —up g —uy
B)~-= (" s — Uiy 2
&13(B) 5 ( 7 + 7 ) (52)

The same method can be used to compute the three other terms 77, 7} and T}

3.3.2. Discrete description of the net structure

Each node J belonging to the net sheet is connected to six neighbouring nodes J, (Fig. 11). In every
fictitious individual wire, joining neighbouring nodes J and J, acts an elastic force F}.

The vectorial location X, of node J (mass m), in contact with snow element /, is given by Eq. (53):

6

mX, =mg+ F)+ Rk (53)
p=I
with
. X, —X,| -1, X, —X
F? = ES, 1, = X0 = Loy X0, =X (54)
Lop X, = X,
e »
Nl \ /| Je
v
.
\ 7
J
o — VYV ¥ _ _
\]2 _/‘\ ° \]5
/N
/ \
/ \
./ \
J3 LN

Fig. 11. Description of the net sheet: the set of neighbouring nodes.
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where S; is the cross-section of the individual wires joining nodes J and J,, /,, is thﬂ) initial length, and £
is the elastic modulus of the steel. It is assumed that F7 is a tension force; thus, if || JJ ,|| < /,,, F7 is equal
to zero.

ops

3.3.3. Mechanical interaction between snowpack and net structure

Modelling the interaction between a snow mantel and a structure appears to be a boundary problem in
which the structure is a complex boundary for the snowpack. The interaction between the snowpack and
the net sheet is obviously not reduced at a single point, as suggested previously. In fact, the wires that
constitute the net sheet have a cross-section which must not be ignored. Furthermore, because of complex
local phenomena occurring at the interface between the net and the snow, the actual open sections through
the wire mesh may be reduced. This suggests that each node J is associated with a closed section (denoted
J), so that any snow element that is in contact with this section does not go through it (Fig. 12). This
expansion of sections around nodes accounts for the longitudinal surface of the different wires. Indeed, in
the proposed approach, wires are described only with nodes located at the connection points. However,
interaction between the net and the snowpack can also occur on the longitudinal part of the wires between
two adjoining connection nodes. From a physical point of view, as the cross size of the wires is quite small,
snow in the vicinity of the wires tends to glide around them, inducing volumetric strains in the snow, as well
as a dissipation of energy. In the proposed model, kinematic assumptions concerning the snowpack do not
account for this glide. Thus, assuming that some snow elements are blocked upstream of wires turns out to
be an expedient manner to take a dissipation of energy into account: this dissipation of energy takes place
at the interface between the moving snow elements and those blocked upstream of the wires.

Furthermore, it is assumed that during contact between a snow element / and a closed section J, this
section does not penetrate the snow element. Thus, at each time, the incremental displacements in direction
k1 of the two bodies / and J are equal:

d)?] '/;1 :du, (55)

This kinematic condition makes it possible to model the slowdown of the mantel, and Eq. (55) allows
reaction force R; to be computed.

3.3.4. Boundary conditions

The snowpack has a parallelepiped shape, and thus appropriate boundary conditions have to be ad-
joined on the six-plane surface. The frontal plane is in interaction with the structure and was described in
the previous section. At the interface between the mantel and the soil, the Coulomb friction law is intro-
duced, so that the sliding between the two bodies can be modelled; this law requires the friction angle ¢, to
be known. The back plane and the upper surface of the mantel are assumed to be free, which means that no
stresses are applied to them. The two lateral planes can be chosen free or blocked.

\ 4
1
1
i
.
1
|
.
1
1
1
1

Fig. 12. Introduction of a closed section located at each node.
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4. Concluding remarks

This paper has proposed a multiscale approach for inferring the global behaviour of a snow cover from
its local properties. Although a very simple model is used to describe the local behaviour of the grain bonds,
a complex overall behaviour is obtained by taking a statistical description of the fabrics into account. One
major advantage lies in the fact that only a few parameters are included in this model. However, it must be
noted that this model is based on the following assumptions:

e The mechanical behaviour of a snow volume element depends only on the mechanical behaviour of the
inter-granular bonds belonging to this volume.

e The local behaviour of the inter-granular bonds, described as a quasi-brittle material, is designated by
a non-linear tensile-compressive visco-elastic model.

e Shear strength of grain bonds is ignored.

e The strain localization operator was inferred using an affine approximation from the macroscopic strain
tensor.

e The local fabric of the medium is described well by both the mean coordination number and the distri-
bution densities fj and f,, of inter-granular bond orientations.

Furthermore, the constitutive equations have been entirely determined in the case of a snow mantel in
interaction with a flexible structure. As a first step, a local simple linear visco-elastic law was used, allowing
the explicit analytical constitutive formulation to be inferred. But the extension to the non-linear case is also
proposed. More complex local models should be examined in the future. As a direct experimental study of
the snowpack remains a very difficult task, it should be meaningful to use a structure in order to indirectly
obtain information related to the snowpack. In these conditions, the net structure acts as a macroscopic but
relevant sensor. Mechanical modelling of the interaction between the snowpack and the net structure has
led to a Lagrangian approach based on the discrete-element method. This type of description seems to be
meaningful and of a great interest for cable structures such as avalanche net structures. The relevance of
discrete modelling of the snowpack is closely related to the validity of the proposed form of the dis-
placement field of the snowpack. As confirmed in Part I, which follows, the complete modelling method is
capable of a very good simulation of the forces acting in the different parts of the structure.
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